

RHIC Retreat, Port Jefferson, 10 July 2006

Luminosity and polarization

Delivered luminosity increased by 2 orders of magnitude in 5 years.

Delivered to PHENIX.

Enhanced Design Parameters

1. Au-Au
$$\mathcal{L}_{\text{store avg}} = 8 \times 10^{26} \text{cm}^{-2} \text{s}^{-1}$$
 at 100 GeV/n

2.
$$p\uparrow - p\uparrow$$
 $\mathcal{L}_{\text{store avg}} = 150 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$ at 250 GeV

3.
$$\mathcal{F}_{\text{store avg}} = 70\%$$

4. 60% of calendar time in store = 100h/week

Enhanced Design Parameters (~2008*)

Parameter	unit	Achieved	Enhanced design	
Au-Au operation				
Energy	GeV/n	100	100	
No of bunches		45	111	
Bunch intensity	10^{9}	1.1	1.0	
Average $\mathcal L$	10 ²⁶ cm ⁻² s ⁻¹	5	8	← 1.6×
p↑- p↑ operation				Should be possible
Energy	GeV	100	250	in next Au-Au run
No of bunches		111	111	
Bunch intensity	10^{11}	1.4	2.0	
Average $\mathcal L$	10 ³⁰ cm ⁻² s ⁻¹	20	150	← 7.5×
Polarization ${\mathcal F}$	%	65	70	+5%

^{*} First 250 GeV p↑-p↑ physics run currently scheduled for 2009.

Enhanced Design Parameters (~2008)

Performance limit: beam-beam for p\u20a1-p\u20a1

- Total beam-beam induced tune spread reached $\Delta Q_{bb,tot} = 0.012$
- Other sources of tune spread: $\Delta Q \approx 0.005$
 - nonlinear chromaticity (correction planned for next year)
 - triplet errors (locally corrected)
- Sources for orbit and tune modulation

Calendar time in store after setup

Rest of the time:

- ~20% machine tuning/ramping
- ~15% failures
- ~10% machine development and accelerator physics experiments

Summary I

Run-7 goals:

1. Au-Au
$$\mathcal{L}_{\text{store avg}} = 8 \times 10^{26} \text{cm}^{-2} \text{s}^{-1} \rightarrow \text{Reach}$$

2.
$$p\uparrow - p\uparrow$$
 $\mathcal{L}_{\text{store avg}} = 150 \times \rightarrow 40 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$ at 100 GeV

3.
$$\mathcal{F}_{\text{store avg}} = 70^{\circ}/6$$
 $\rightarrow \text{Reach?}$

- 4. 60% of calendar time in store → Reach with Au-Au
 - 2× Run-6
 - Need 50% increase in Run-8
 - Energy from 100 to 250 GeV in Run-9

Summary II

- Next Au-Au Run:
 - → Operate RHIC like a "QGP factory"

- Next p\parture -p\parture Runs:
 - \rightarrow Operate to maximize $\mathcal L$ and $\mathcal T$ increases